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Abstract - We show that  a  single family of  turbo codes  is 
“nearly  perfect”  with respect  to Shannon’s sphere packing  bound, 
over  a  wide  range of  code  rates and  block sizes. We also  assess the 
“imperfectness”  of  various non-turbo  codes for comparison. 

Excitement about turbo codes [l] was sparked by their close ap- 
proach to ultimate performance limits dictated by channel capacity. 
For block sizes on the order of IO4 bits and higher, the required bit- 
signal-to-noise ratio (SNR) E / , / N I j  for a turbo code of rate r closely 
approaches the capacity limit for codes constrained to rate r .  For 
smaller block sizes, the required E, , /NO strays farther from the rate- 
constrained capacity limit. However, just as a constraint on r raises 
the capacity-limited E I , / N l j ,  so does a constraint on code block size 
n or information block size k .  A classic lower bound on the error 
probability for codes of specific k and r is Shannon’s sphere-packing 
bound [2]. We evaluated this bound for equal-energy signals applied 
to acontinuous-input additive white Gaussian noise (AWGN) channel; 
Fig. 1 shows the minimum E / , / N , )  to attain f , , ,  = IO-*. 
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Fig. 1 :  Sphere packing hound for the continuous-input AWGN channel. 

The sphere-packing bound would be reached with equality only if 
the code were a  perfect code for this channel, i.e., if equal-size non- 
intersecting cones could be drawn around every codeword to com- 
pletely fill n-dimensional space. We define the imperfectness of a 
given code as the difference between the code’s required E I , / N ( ~  to 
attain a given fl,j, and the minimum possible E l 1 / N o  required to attain 
the same ft,>, implied by the sphere-packing bound for codes with the 
same block size k and code rate r .  These differences, measured in dB, 
are shown in Fig. 2  for various codes, with PI,, = 

The simulated turbo codes in this figure are systematic parallel con- 
catenated codes constructed from two recursive convolutional com- 
ponents with constraint length 5 .  The imperfectness of these turbo 
codes is approximately 0.7 dB for all four code rates plotted, for all 
block sizes above 1000 bits. 

‘This  research was carried out at the  Jet  Propulsion  Laboratory (JPL), 
California  Institute of Technology,  under a contract with NASA. 
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Fig. 2: Imperfectness of  various  codes  relative  to  the  sphere  packing  hound. 

Fig. 2 also shows the imperfectness of various “families” of non- 
turbo codes for comparison: (a) a family of “best-dmi,” codes of rate 
1/2 (with maximum likelihood decoding); (b) two families of rate- 
1/2 convolutional codes terminated to various block lengths; and (c) 
four families of concatenated codes used in JPL‘s deep space missions 
over the past two decades. The concatenated codes used inner convo- 
lutional codes of various rates and constraint lengths, and an outer code 
block consisting of interleaved (255,223) Reed-Solomon codewords. 
Each concatenated code family in the figure is obtained by keeping the 
component codes constant and varying the interleaving depth. One 
concatenated code (Galileo LGA) used a variable-redundancy ( 2 5 5 , ~ )  
outer code and 4-stage iterative decoding; results are shown only for 
a fixed interleaving depth. 

Fig. 2 shows that JPL‘s long codes historically marched toward per- 
fectness in roughly half-dB steps from Voyager to Cassini to Galileo 
LGA to future missions that will use turbo codes. The turbo codes’ 
0.7 dB of imperfectness is not unprecedented. The three classic “best- 
&,,” codes, designed to maximize minimum Hamming distance, ap- 
proach perfectness even more closely (within 0.5 dB). However, never 
before turbo codes have there been practically decodable, nearly per- 
fect codes with block sizes beyond a few tens of bits. For example, the 
terminated convolutional codes in Fig. 2 are nearly perfect (just under 
1 dB of imperfectness) only at their smallest possible block sizes. In 
contrast, the turbo code family is uniformly nearly perfect for all block 
sizes above 1000 bits. More detailed results are in [ 3 ] .  
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